Operate C1+C2+C3, we get f(x)=∣∣1+a2x+b2x+xc2xx+a2x+1+b2x+x+c2xx+a2x+x+b2x+1+c2x(1+b2)x1+b2x(1+b2)x(1+c2)x(1+c2)x1+c2x∣∣
= (1+2x+(a2+b2+c2)x) ∣∣111(1+b2)x1+b2x(1+b2)x(1+c2)x(1+c2)x1+c2x∣∣ ∣∣100(1+b2)x1−x0(1+c2)x01−x∣∣
[∵a2+b2+c2=−2∴1+2x+(ca2+b2+c2)x=1+2x−2x=1]
= (1−x)2 which is a polynomial of degree 2.