Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a2 +b2 +c2 = -2 and f(x)=|1+a2x&(1+b2)x&(1+c2)x (1+a2)x&1+b2x&(1+c2)x (1+a2)x&(1+b2)x&1+c2x| , then f(x) is a polynomial of degree
Q. If
a
2
+
b
2
+
c
2
=
−
2
and
f
(
x
)
=
∣
∣
1
+
a
2
x
(
1
+
a
2
)
x
(
1
+
a
2
)
x
(
1
+
b
2
)
x
1
+
b
2
x
(
1
+
b
2
)
x
(
1
+
c
2
)
x
(
1
+
c
2
)
x
1
+
c
2
x
∣
∣
, then
f
(
x
)
is a polynomial of degree
3421
188
UPSEE
UPSEE 2012
Report Error
A
3
B
2
C
1
D
0
Solution:
Applying
C
1
→
C
1
+
C
2
+
C
3
, we get
f
(
x
)
=
∣
∣
1
1
1
(
1
+
b
2
)
x
(
1
+
b
2
x
)
(
1
+
b
2
)
x
(
1
+
c
2
)
x
(
1
+
c
2
)
x
1
+
c
2
x
∣
∣
(
∵
a
2
+
b
2
+
c
2
+
2
=
0
)
Again, applying
R
2
→
R
2
−
R
1
,
R
3
→
R
3
−
R
1
,
we get
=
∣
∣
1
0
0
(
1
+
b
2
)
x
1
−
x
0
(
1
+
c
2
)
x
0
1
−
x
∣
∣
=
(
1
−
x
)
2
Hence, degree of
f
(
x
)
=
2