First multiply C1 by a,C2 by b,C3 by c, followed by
multiplying R1 by 1/a,R2 by 1/b and R3 by 1/c, we get
∣∣a2+(b2+c2)cosθa2(1−cosθ)a2(1−cosθ)b2(1−cosθ)b2+(c2+a2)cosθb2(1−cosθ)c2(1−cosθ)c2(1−cosθ)c2+(a2+b2)cosθ∣∣
Using C1→C1+C2+C3 and a2+b2+c2=1, we get
Δ=∣∣111b2(1−cosθ)b2+(1−b2)cosθb2(1−cosθ)c2(1−cosθ)c2(1−cosθ)c2+(1−c2)cosθ∣∣
Using R2→R2−R1,R3→R3−R1, we get Δ=∣∣100b2(1−cosθ)cosθ0c2(1−cosθ)0cosθ∣∣=cos2θ