Put a=cosθ and b=sinθ Hence E=a+b−2b+1=sinθ+cosθ−2sinθ+1=f(θ) Formaxima/minima, f′(θ)=0 ⇒(sinθ+cosθ−2)(cosθ)−(sinθ+1)(cosθ−sinθ)=0 ⇒sinθcosθ+cos2θ−2cosθ−sinθcosθ+sin2θ−cosθ+sinθ=0 ⇒cos2θ−2cosθ+sin2θ−cosθ+sinθ=0 ⇒1−3cosθ+sinθ=0 ⇒1+sinθ=3cosθ ⇒(1+sinθ)2=9cos2θ=9−9sin2θ ⇒10sin2θ+2sinθ−8=0 ⇒5sin2θ+sinθ−4=0 ⇒5sin2θ+5sinθ−4sinθ−4=0 ⇒(sin2θ+1)(5sinθ−4)=0 ⇒sinθ=−1 or sinθ=54
Now value of E, when sinθ=−1 is 0 .
and value of E when sinθ=54 is sinθ+cosθ−2sinθ+1=54+53−254+1 or 54−53−254+1 i.e E=3−9 or −99
Hence E]minimum =−3 when sinθ=54 and cosθ=53⇒u=−3
Hence, u2=9