x2+y2=b2 : centre (0,0) radius =b (x−a)2+y2=b2 centre (a,0) radius =b y=mx−b1+m2 is tangent to both circle
Since, when x=0y=−b1+m2<0
when y=0x=mb1+m2>0
Now, perpendicular distance from centre (a,0) will be equal to radius b. ∣∣m2+1ma−0−b1+m2∣∣=b ⇒∣∣m2+1ma−b1+m2∣∣=b
-ve sign m2+1ma−b1+m2=−b ⇒ma=0⇒m=0 or a=0 not possible.
+ve sign m2+1ma−b1+m2=+b ⇒m=a2−4b22b