A=(2,4,−1),B=(3,6,−1),C=(4,5,1)
Let D=(x,y,z)
Since, diagonals of a parallelogram are bisect each other. ⇒ Mid-point of AC= Mid-point of BD (22+4,24+5,2−1+1)=(23+x,26+y,2−1+z) (3,29,0)=(23+x,26+y,2−1+z) ∴23+x=3;26+y=29;2−1+z=0 3+x=6;6+y=9;−1+z=0 x=3;y=3;z=1 ∴ Fourth vertex D=(3,3,1)