Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If |a2+1 a b a c b a b2+1 b c c a c b c2+1|=k √(a b c), where a, b, c are positive reals then minimum possible value of k is
Q. If
∣
∣
a
2
+
1
ba
c
a
ab
b
2
+
1
c
b
a
c
b
c
c
2
+
1
∣
∣
=
k
(
ab
c
)
, where
a
,
b
,
c
are positive reals then minimum possible value of
k
is
915
92
Determinants
Report Error
A
1
B
4
C
16
D
64
Solution:
ab
c
1
∣
∣
a
3
+
a
b
2
a
c
2
a
a
2
b
b
3
+
b
c
2
b
a
2
c
b
2
c
c
3
+
c
∣
∣
=
∣
∣
a
2
+
1
b
2
c
2
a
2
b
2
+
1
c
2
a
2
b
2
c
2
+
1
∣
∣
=
(
1
+
a
2
+
b
2
+
c
2
)
∣
∣
1
b
2
c
2
1
1
+
b
2
c
2
1
b
2
1
+
c
2
∣
∣
=
(
1
+
a
2
+
b
2
+
c
2
)
=
k
ab
c
Now,
4
1
+
a
2
+
b
2
+
c
2
≥
ab
c
⇒
ab
c
1
+
a
2
+
b
2
+
c
2
=
k
≥
4