Q.
If a1/x=b1/y=c1/z and a,b,c are in GP, then x,y,z will be in
1788
173
Rajasthan PETRajasthan PET 2005
Report Error
Solution:
Given, a1/x=b1/y=c1/z
and a,b,c are in GP. Let common ratio of GP is r. ∴b=ar,c=ar2
Now, a1/x=b1/y=c1/z ⇒x1loga=y1logb=z1logc ∴xy=logalogb=logalogar2=1+logalogr ..(i)
Similarly, xz=logalogc=logalogar2=1+loga2logr ..(ii)
From Eqs. (i) and (ii), xz=1+2(xy−1) ⇒xz=1+x2y−2 ⇒xz=x2y−1 ⇒z=2y−x ⇒2y=x+z
Hence, x,y,z are in AP.