Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a -1+ b -1+ c -1=0 such that |1+a 1 1 1 1+b 1 1 1 1+c|=λ then the value of λ is :
Q. If
a
−
1
+
b
−
1
+
c
−
1
=
0
such that
∣
∣
1
+
a
1
1
1
1
+
b
1
1
1
1
+
c
∣
∣
=
λ
then the value of
λ
is :
2791
224
Determinants
Report Error
A
0
9%
B
- abc
9%
C
abc
73%
D
None of these
9%
Solution:
Given:
a
−
1
+
b
−
1
+
c
−
1
=
0
and
∣
∣
1
+
a
1
1
1
1
+
b
1
1
1
1
+
c
∣
∣
=
λ
,
⇒
ab
c
∣
∣
a
1
+
a
b
1
c
1
a
1
b
1
+
b
c
1
a
1
b
1
c
1
+
c
∣
∣
=
λ
⇒
ab
c
∣
∣
a
1
+
1
b
1
c
1
a
1
b
1
+
1
c
1
a
1
b
1
c
1
+
1
∣
∣
=
λ
(
R
1
→
R
1
+
R
2
+
R
3
)
⇒
ab
c
∣
∣
a
1
+
b
1
+
c
1
+
1
b
1
c
1
a
1
+
b
1
+
c
1
+
1
b
1
+
1
c
1
a
1
+
b
1
+
c
1
+
1
b
1
c
1
+
1
∣
∣
=
λ
⇒
ab
c
(
a
1
+
b
1
+
c
1
+
1
)
∣
∣
1
b
1
c
1
1
b
1
+
1
c
1
1
b
1
c
1
+
1
∣
∣
=
λ
⇒
ab
c
∣
∣
1
b
1
c
1
1
b
1
+
1
c
1
1
b
1
c
1
+
1
∣
∣
=
λ
R
2
→
b
1
R
1
−
R
2
,
R
3
→
c
1
R
1
−
R
3
⇒
ab
c
∣
∣
1
0
0
1
−
1
0
1
0
−
1
∣
∣
=
λ
⇒
ab
c
=
λ