Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a-1 + b-1 + c-1 = 0 such that |1+a&1&1 1&1+b&1 1&1&1+c| = λ then the value of λ is :
Q. If
a
−
1
+
b
−
1
+
c
−
1
=
0
such that
∣
∣
1
+
a
1
1
1
1
+
b
1
1
1
1
+
c
∣
∣
=
λ
then the value of
λ
is :
2591
220
Determinants
Report Error
A
0
27%
B
- abc
11%
C
abc
48%
D
none of these
14%
Solution:
Given :
a
−
1
+
b
−
1
+
c
−
1
=
0
.....(1)
and
∣
∣
1
+
a
1
1
1
1
+
b
1
1
1
1
+
c
∣
∣
=
λ
,
⇒
ab
c
∣
∣
a
1
+
a
b
1
c
1
a
1
b
1
+
b
c
1
a
1
b
1
c
1
+
c
∣
∣
=
λ
⇒
ab
c
∣
∣
a
1
+
1
b
1
c
1
a
1
b
1
+
1
c
1
a
1
b
1
c
1
+
1
∣
∣
=
λ
(
R
1
→
R
1
+
R
2
+
R
3
)
⇒
ab
c
∣
∣
a
1
+
b
1
+
c
1
+
1
b
1
c
1
a
1
+
b
1
+
c
1
+
1
b
1
+
1
c
1
a
1
+
b
1
+
c
1
+
1
b
1
c
1
+
1
∣
∣
=
λ
⇒
ab
c
(
a
1
+
b
1
+
c
1
+
1
)
∣
∣
1
b
1
c
1
1
b
1
+
1
c
1
1
b
1
c
1
+
1
∣
∣
=
λ
⇒
ab
c
(
1
)
∣
∣
1
b
1
c
1
1
b
1
+
1
c
1
1
b
1
c
1
+
1
∣
∣
=
λ