Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a1, a2, a3, ldots, an are in A.P. and a1=0, then the value of ((a3/a2)+(a4/a3)+⋅s+(an/an-1))-a2 ((1/a2)+(1/a3)+⋅s+(1/an-2)) is equal to
Q. If
a
1
,
a
2
,
a
3
,
…
,
a
n
are in
A
.
P
. and
a
1
=
0
, then the value of
(
a
2
a
3
+
a
3
a
4
+
⋯
+
a
n
−
1
a
n
)
−
a
2
(
a
2
1
+
a
3
1
+
⋯
+
a
n
−
2
1
)
is equal to
3285
200
KEAM
KEAM 2011
Sequences and Series
Report Error
A
(
n
−
2
)
+
(
n
−
2
)
1
B
n
−
2
1
C
(
n
−
2
)
D
n
−
1
E
n
+
2
Solution:
Given;
a
1
,
a
2
,
a
3
,
…
,
a
n
are in AP and
a
1
=
0
Then,
a
2
=
a
1
+
d
=
0
+
d
=
d
a
3
=
a
1
+
2
d
=
0
+
2
d
=
2
d
_________________
_________________
a
n
=
a
1
+
(
n
−
1
)
d
=
(
n
−
1
)
d
Now,
(
a
2
a
3
+
a
3
a
4
+
…
+
a
n
−
1
a
n
)
−
a
2
(
a
2
1
+
a
3
1
+
…
+
a
n
−
2
1
)
=
(
d
2
d
+
2
d
3
d
+
…
+
(
n
−
2
)
d
(
n
−
1
)
d
)
−
d
(
d
1
+
2
d
1
+
…
+
(
n
−
3
)
d
1
)
=
(
1
2
+
2
3
+
…
+
(
n
−
2
)
(
n
−
1
)
)
−
(
1
+
2
1
+
…
+
n
−
3
1
)
=
{
(
1
+
1
)
+
(
1
+
2
1
)
+
…
+
(
1
+
n
−
2
1
)
}
−
{
1
+
2
1
+
…
+
n
−
3
1
}
=
{(
1
+
1
+
1
+
…
+
(
n
−
2
)
terms )
+
(
1
+
2
1
+
3
1
−
{
1
+
2
1
+
…
+
n
−
3
1
}
+
…
+
n
−
3
1
)
+
n
−
2
1
}
}
=
{
(
1
+
1
+
…
+
(
n
−
2
)
terms
)
+
n
−
2
1
}
=
(
n
−
2
)
+
(
n
−
2
)
1