Q.
If a1,a2,a3,…..,a4001 are terms of an A.P. such that a1a21+a2a31+……+a4000a40011=10 and a2+a4000=50, then find the value of ∣a1−a4001∣.
Let common difference of A.P. =d
|Online test-4, P-2, 2
Now a1a21+a2a31+……+a4000a40011=10 ⇒d1[a1a2(a2−a1)+a2a3a3−a2+a3a4a4−a3+….+a4000a4001a4001−a4000]=10⇒d1(a11−a40011)=10 ⇒da1a4001a4001−a1=10⇒da1a40014000d=10⇒a1a4001=400
But a2+a4000=a1+a4001=50
(As sum of terms equidistant from beginning and end in finiteA.P. is same)
Hence (a1−a4001)2=(a1+a4001)2−4a1a4001=(50)2−4×(400)=900⇒∣a1−a4001∣=30