Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a1, a2, a3 are in arithmetic progression and d is the common difference, then (tan)- 1 ((d/1 + a1 a2)) + (tan)- 1 â¡ ((d/1 + a2 a3)) =
Q. If
a
1
,
a
2
,
a
3
are in arithmetic progression and
d
is the common difference, then
(
t
an
)
−
1
(
1
+
a
1
a
2
d
)
+
(
t
an
)
−
1
(
1
+
a
2
a
3
d
)
=
1999
216
NTA Abhyas
NTA Abhyas 2020
Inverse Trigonometric Functions
Report Error
A
(
t
an
)
−
1
(
1
+
a
1
a
3
2
d
)
0%
B
(
t
an
)
−
1
(
1
+
a
1
a
3
d
)
100%
C
(
t
an
)
−
1
(
1
+
a
2
a
3
2
d
)
0%
D
(
t
an
)
−
1
(
1
−
a
1
a
3
2
d
)
0%
Solution:
Now,
tan
−
1
(
1
+
a
1
a
2
d
)
+
tan
−
1
(
1
+
a
2
a
3
d
)
=
tan
−
1
(
1
+
a
1
a
2
a
2
−
a
1
)
+
tan
−
1
(
1
+
a
2
a
3
a
3
−
a
2
)
(
∵
tan
−
1
x
−
tan
−
1
y
=
tan
−
1
1
+
x
y
x
−
y
)
=
tan
−
1
a
2
−
tan
−
1
a
1
+
tan
−
1
a
3
−
tan
−
1
a
2
=
tan
−
1
a
3
−
tan
−
1
a
=
tan
−
1
(
1
+
a
1
a
3
a
3
−
a
1
)
=
tan
−
1
(
1
+
a
1
a
3
(
a
3
−
a
2
)
+
(
a
2
−
a
1
)
)
=
tan
−
1
(
1
+
a
1
a
3
2
d
)