Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a1,a2,a3,a4,a5 are consecutive terms of an arithmetic progression with common difference 3, then the value of | a32 a2 a1 a42 a3 a2 a52 a4 a3 | is
Q. If
a
1
,
a
2
,
a
3
,
a
4
,
a
5
are consecutive terms of an arithmetic progression with common difference
3
,
then the value of
∣
∣
a
3
2
a
4
2
a
5
2
a
2
a
3
a
4
a
1
a
2
a
3
∣
∣
is
2223
236
NTA Abhyas
NTA Abhyas 2020
Matrices
Report Error
A
0
100%
B
27
0%
C
81
0%
D
162
0%
Solution:
Apply
R
3
↔
R
3
−
R
2
,
R
2
↔
R
2
−
R
1
∣
∣
a
3
2
a
4
2
−
a
3
2
a
5
2
−
a
4
2
a
2
a
3
−
a
2
a
4
−
a
3
a
1
a
2
−
a
1
a
3
−
a
2
∣
∣
=
∣
∣
a
3
2
3
(
a
3
+
a
4
)
3
(
a
4
+
a
5
)
a
2
3
3
a
1
3
3
∣
∣
Applying
C
3
↔
C
3
−
C
2
∣
∣
a
3
2
3
(
a
3
+
a
4
)
3
(
a
4
+
a
5
)
a
2
3
3
−
3
0
0
∣
∣
=
−
3
[
9
(
a
3
+
a
4
)
−
9
(
a
4
+
a
5
)
]
=
−
27
[
a
3
−
a
5
]
=
−
27
×
−
6
=
162