Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a > 0, b > 0, c > 0 and the minimum value of a(b2+c2)+ b (c2+a2)+c(a2+b2) is λ abc , then λ is
Q. If
a
>
0
,
b
>
0
,
c
>
0
and the minimum value of
a
(
b
2
+
c
2
)
+
b
(
c
2
+
a
2
)
+
c
(
a
2
+
b
2
)
is
λ
ab
c
, then
λ
is
3808
199
Sequences and Series
Report Error
A
2
12%
B
1
22%
C
6
51%
D
3
15%
Solution:
Consider the numbers
a
b
2
,
a
c
2
,
b
a
2
,
c
a
2
,
c
b
2
Since
A
.
M
.
≥
G
.
M
.
∴
6
a
b
2
+
a
c
2
+
b
c
2
+
b
a
2
+
c
a
2
+
c
b
2
≥
(
a
b
2
.
a
c
2
.
b
c
2
.
b
a
2
.
c
a
2
.
c
b
2
)
6
1
⇒
a
(
b
2
+
c
2
)
+
b
(
c
2
+
a
2
)
+
c
(
a
2
+
b
2
)
≥
6
(
a
6
b
6
c
6
)
6
1
=
6
ab
c
∴
Min. value of
a
(
b
2
+
c
2
)
+
b
(
c
2
+
a
2
)
+
c
(
a
2
+
b
2
)
=
6
ab
c
∴
λ
=
6