Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 7 log a b c(a3+b3+c3)=3 k((1+ log 3(a b c)/ log 3(a b c))) and (a b c)a+b+c=1 and k=(m/n) in lowest form, where m, n ∈ N then find the value (m+n).
Q. If
7
lo
g
ab
c
(
a
3
+
b
3
+
c
3
)
=
3
k
(
l
o
g
3
(
ab
c
)
1
+
l
o
g
3
(
ab
c
)
)
and
(
ab
c
)
a
+
b
+
c
=
1
and
k
=
n
m
in lowest form, where
m
,
n
∈
N
then find the value
(
m
+
n
)
.
82
109
Continuity and Differentiability
Report Error
Answer:
0010
Solution:
a
+
b
+
c
=
0
⇒
a
3
+
b
3
+
c
3
=
3
ab
c
L.H.S.
=
7
lo
g
ab
c
(
3
ab
c
)
R.H.S.
=
3
k
l
o
g
3
(
ab
c
)
l
o
g
3
(
3
ab
c
)
=
3
k
lo
g
ab
c
(
3
ab
c
)
So
7
lo
g
ab
c
(
3
ab
c
)
=
3
k
lo
g
ab
c
(
3
ab
c
)
∴
k
=
3
7
≡
n
m
∴
(
m
+
n
)
=
7
+
3
=
10