Q.
If 4i^+7j^+8k^,2i^+3j^+4k^ and 2i^+5j^+7k^ are the position vectors of the vertices A,B and C, respectively, of triangle ABC, then the position vector of the point where the bisector of angle A meets BC is
Suppose the bisector of angle A meets BC at D. Then AD divides BC in the ratio AB:AC.
So, P.V. of D is given by ∣AB∣+∣AC∣∣AB∣(2i^+5j^+7k^)+∣AC∣(2i^+3j^+4k^)
But AB=−2i^−4j^−4k^
and AC=−2i^−2j^−k^ ⇒∣AB∣=6 and ∣AC∣=3
Therefore, P.V, of D is given by 6+36(2i^+5j^+7k^)+3(2i^+3j^+4k^) =31(6i^+13j^+18k^)