Given, line is 3x+y+k=0 ⇒y=−3x−k
And equation of circle is x2+y2=10
Here, a2=10,m=−3,c=−k
If given line touches the circle , then length of intercept =0 ⇒21+m2a2(1+m2)−c2=0 ⇒21+910(1+9)−k2=0 ⇒100−k2=0 ⇒100−k2=0 ⇒k=±10 Alternative : If the given line is tangent to the circle, then the length of the perpendicular from the centre upon the line is equal to the radius of the circle.
ie, ∣∣a2+b2ax1+by1+c∣∣=r ⇒∣∣(3)2+(1)23×0+6×0+k∣∣=10 ⇒∣∣10k∣∣=10 ⇒k=100 ⇒k=±10