(x+1)63x2−2x+4=x+1A1+(x+1)2A2+(x+1)3A3+(x+1)4A4+(x+1)5A5+(x+1)6A63x2−2x+4=A1(x+1)5+A2(x+1)4+A3(x+1)3+A4(x+1)2+A5(x+1)+A6 ....(i)
Putting x=−1, we get 3(−1)2−2(−1)+4=A6⇒A6=9
Putting the value of A6 in (i), we get 3x2−2x+4−9=(x+1)[A1(x+1)4+A2(x+1)3+A3(x+1)2+A4(x+1)+A5] 3x2−2x−5=(x+1)[A1(x+1)4+A2(x+1)3+A3(x+1)2+A4(x+1)+A5]3x2−5x+3x−5=(x+1)[A1(x+1)4+A2(x+1)3+A3(x+1)2+A4(x+1)+A5] (3x−5)(x+1)=(x+1)[A1(x+1)4+A2(x+1)3+A3(x+1)2+A4(x+1)+A5] 3x−5=A1(x+1)4+A2(x+1)3+A3(x+1)2+A4(x+1)+A5] ...(ii)
Putting x=−1 in (ii), we get ⇒A5=−8
Putting the value of A5 in (ii), we get 3x−5+8=(x+1)[A1(x+1)3+A2(x+1)2+A3(x+1)+A4] 3=A1(x+1)3+A2(x+1)2+A3(x+1)+A4 .. (iii)
Putting x=−1 in (iii), we get A4=3
Putting the value of A4 in (iii), we get 0=(x+l)[A1(x+1)2+A2(x+1)+A3] ⇒A3=0
Similarly, A1=A2=0
Now, (A1+A3+A5,A2+A4+A6) =(0+0−8,0+3+9)=(−8,12)