Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (√3+i)100=299(a+ib), then a2+b2 is equal to
Q. If
(
3
+
i
)
100
=
2
99
(
a
+
ib
)
, then
a
2
+
b
2
is equal to
2725
220
Complex Numbers and Quadratic Equations
Report Error
A
2
31%
B
4
44%
C
3
12%
D
none of these
12%
Solution:
Since
(
3
+
i
)
100
=
2
99
(
a
+
ib
)
∴
(
3
−
i
)
100
=
2
99
(
a
−
ib
)
Multiplying, we get
(
3
+
i
)
100
(
3
−
i
)
100
=
2
198
(
a
2
+
b
2
)
∴
a
2
+
b
2
=
2
198
(
3
+
1
)
100
=
2
198
2
200
=
2
2
=
4
.