Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (2x2 - x - 1)5 = a0 + a1x + a2x2 + ... + a10x10, then, a2 + a4 + a6 + a8 + a10 =
Q. If
(
2
x
2
−
x
−
1
)
5
=
a
0
+
a
1
x
+
a
2
x
2
+
...
+
a
10
x
10
, then,
a
2
+
a
4
+
a
6
+
a
8
+
a
10
=
5145
195
Binomial Theorem
Report Error
A
15
11%
B
30
15%
C
16
11%
D
17
63%
Solution:
(
2
x
2
−
x
−
1
)
5
=
a
0
+
a
1
x
+
a
2
x
2
+
...
+
a
10
x
10
Put
x
=
1
, we get,
0
=
a
0
+
a
1
+
a
2
+
...
+
a
10
...
(
i
)
Put
x
=
−
1
, we get,
32
=
a
0
−
a
1
+
a
2
−
...
+
a
10
...
(
ii
)
Adding
(
i
)
and
(
ii
)
, we get
a
2
+
a
4
+
...
+
a
10
=
(
32/2
)
+
1
=
16
+
1
=
17
(
∵
a
0
=
−
1
)