On comparing the given equations with ax2+2hxy+by2+2gx+2fy+c=0, we get a=2,b=2λ,h=−5,g=25 f=−8,c=−3
Since, the given equations represents a pair of straight lines, therefore ∣∣ahghbfgfc∣∣=0 ⇒∣∣2−55/2−52λ−85/2−8−3∣∣=0 ⇒2(−6λ−64)+5(15+20)+25(40−5λ)=0 ⇒−12λ−128+175+100−225λ=0 ⇒−249λ=−147 ⇒λ=49147×2=6
Now, the point of intersection of given lines is given by (h2−abbg−fh,h2−abaf−gh)=(25−2430−40,25−24−16+225) =(−10,2−7)