Q.
If 2(y−a) is the harmonic mean between y−x and y−z , then x−a,y−a and z−a are in
440
194
NTA AbhyasNTA Abhyas 2022Sequences and Series
Report Error
Solution:
It is given that, y−x,2(y−a)and(y−z) are in harmonic progression. ⇒y−x1,2(y−a)1,y−z1 are in arithmetic progression. ⇒2(y−a)1−y−x1=y−z1−2(y−a)1 ⇒y−x2a−y−x=y−zy+z−2a ⇒(x−a)−(y−a)(x−a)+(y−a)=(y−a)−(z−a)(y−a)+(z−a) ⇒y−ax−a=z−ay−a
Hence, x−a,y−aandz−a are in geometric progression