Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 2 x y d y=(x2+y2+1) d x, y(1)=0 and y(x0)=√3, then x0 can be
Q. If
2
x
y
d
y
=
(
x
2
+
y
2
+
1
)
d
x
,
y
(
1
)
=
0
and
y
(
x
0
)
=
3
, then
x
0
can be
151
109
Differential Equations
Report Error
A
2
B
- 2
C
3
D
- 3
Solution:
2
x
y
d
x
d
y
=
x
2
+
y
2
+
1
Put
y
2
=
t
x
d
x
d
t
=
x
2
+
t
+
1
d
x
d
t
−
x
t
=
x
x
2
+
1
I.F.
=
x
1
Hence
x
t
=
∫
x
2
x
2
+
1
d
x
=
x
−
x
1
+
C
∴
y
2
=
x
2
−
1
,
C
=
0
as
y
(
1
)
=
0
Now,
y
(
x
0
)
=
3
⇒
3
=
x
0
2
−
1
⇒
x
0
2
=
4
∴
x
0
=
±
2