Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 2x + 2y = 2x+y , then the value of (dy/dx) at x = y = 1 is
Q. If
2
x
+
2
y
=
2
x
+
y
, then the value of
d
x
d
y
at
x
=
y
=
1
is
1725
204
AMU
AMU 2010
Report Error
A
0
B
-1
C
1
D
2
Solution:
2
x
+
2
y
=
2
x
+
y
On differentiating w. r.t x,
2
x
l
o
g
2
+
2
y
l
o
g
2
d
x
d
y
=
2
(
x
+
y
)
⋅
l
o
g
2
{
1
+
d
x
d
y
}
⇒
2
x
+
2
y
d
x
d
y
=
2
(
x
+
y
)
+
2
(
x
+
y
)
d
x
d
y
⇒
(
2
x
−
2
x
⋅
2
y
)
=
(
2
x
⋅
2
y
−
2
y
)
d
x
d
y
⇒
d
x
d
y
=
−
(
2
x
⋅
2
y
−
2
y
)
(
2
x
⋅
2
y
−
2
x
)
⇒
(
d
x
d
y
)
a
t
(
1
,
1
)
=
−
1