Equating the coefficient of x20, we get 220−a20=1⇒a=20220−1⇒ (C)
put, x=21, we get 0−(2a+b)20=(41+2p+q)10 ∴(2a+b)20+(41+2p+q)10=0 2a=−b and 41+2p+q=0 a+2b=0⇒ (B) b=2−20220−1.
put, x=0 we get 1−b20=q10 1−(2−20220−1)20=q10 1−220(220−1)=q10 2201=q10⇒q=41
Using, 41+2p+q=0 41+2p+41=0⇒p=−1
Hence B, C, D.