Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 2 ∫10 tan-1 xdx = ∫10 cot-1(1 - x + x2)dx, then ∫10 tan-1 (1 - x + x2) dx is equal to :
Q. If
2
∫
0
1
tan
−
1
x
d
x
=
∫
0
1
cot
−
1
(
1
−
x
+
x
2
)
d
x
,
then
∫
0
1
tan
−
1
(
1
−
x
+
x
2
)
d
x
is equal to :
2333
204
JEE Main
JEE Main 2016
Integrals
Report Error
A
lo
g
4
14%
B
2
π
lo
g
2
41%
C
lo
g
2
27%
D
2
π
−
lo
g
4
18%
Solution:
2
0
∫
1
t
a
n
−
1
x
d
x
=
0
∫
1
(
2
π
−
t
a
n
−
1
(
1
−
x
+
x
2
)
)
d
x
2
0
∫
1
t
a
n
−
1
x
d
x
=
0
∫
1
2
π
d
x
−
2
0
∫
1
t
a
n
−
1
(
1
−
x
+
x
2
)
d
x
2
0
∫
1
t
a
n
−
1
(
1
−
x
+
x
2
)
d
x
=
2
π
−
2
0
∫
1
t
a
n
−
1
x
d
x
Let
I
1
=
0
∫
1
t
a
n
−
1
x
d
x
=
[
(
t
a
n
−
1
x
)
x
]
0
1
−
0
∫
1
1
+
x
2
1
x
d
x
=
4
π
−
0
∫
1
1
+
x
2
x
d
x
=
4
π
−
2
1
I
n
2
By equation____(1)
2
π
−
2
[
4
π
−
2
1
I
n
]
=
I
n
2