Q.
If (1+x+x2)n=ao+a1x+a2x2+.....+a2nx2n, then ao+a3+a6+.....=
1758
195
AMUAMU 2014Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, (1+x+x2)n =a0+a1x+a2x2 +a3x3+…+a2nx2n (1+x+x2)n=(a0+a3x6+a9x9+…) +x(a1+a4x3+a7x6+…)+x2(a2+a5x3+a8x6+…)
Let E1=a0+a3+a9+… E2=a1+a4+a7+…
and E3=a2+a5+a8+…
put x=1,ω,ω2 respectively, we get (1+1+1)n=E1+E2+E3 ⇒3n=E1+E2+E3…(i) (1+ω+ω2)n=E1+ωE2+ω2E3 ⇒0=E1+ωE2+ω2E3…(ii)
and (1+ω2+ω4)n=E1+ω2E2+ω4E3 ⇒0=E1+ω2E2+ωE3…(iii)
On adding Eqs. (i), (ii) and (iii), we get 3n=3E1+(1+ω+ω2)E2+(1+ω2+ω)E3 ⇒3n=3E1+0+0 ⇒E1=3n−1