Given equation is 1−x6+1−y6=a(x3−y3) ⇒x3−y31−x6+1−y6=a
On differentiating both sides w.r.t., x, we get (x3−y3)2[(x3−y3)(21−x6−6x5−21−y66y5dxdy)−(1−x6+1−y6)(3x2−3y2dxdy)]=0 ⇒(y2(1−x6+1−y6)−1−y6y5(x3−y3))dxdy =x2(1−x6+1−y6)+1−x6x5(x3−y3) ⇒y2dxdy[1−y61−x6+1−y6+(1−y6)−y3x3+y6] =x2[1−x6(1−x6)+1−y61−x6+x6−x3y3] ⇒y2dxdy[1−y61−x61−y6+1−x3y3] =x2[1−x61+1−y61−x6−x3y3] ⇒y2dxdy=x21−x61−y6