Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 1+x2=√3x, then ∑ limitsn=124( xn-(1/xn) )2 is equal to
Q. If
1
+
x
2
=
3
x
,
then
n
=
1
∑
24
(
x
n
−
x
n
1
)
2
is equal to
3796
216
KEAM
KEAM 2007
Report Error
A
0
B
48
C
−
24
D
24
E
−
48
Solution:
Given that,
1
+
x
2
=
3
x
⇒
x
2
−
3
x
+
1
=
0
⇒
x
=
2
3
±
3
−
4
=
2
3
±
i
=
cos
6
π
±
i
s
in
6
π
⇒
x
n
=
cos
6
nπ
±
i
sin
6
nπ
And
x
n
1
=
cos
6
nπ
∓
i
s
in
6
nπ
∴
x
n
−
x
n
1
=
(
cos
6
nπ
±
i
sin
6
nπ
−
cos
6
nπ
±
i
sin
6
nπ
)
=
±
2
i
sin
6
nπ
∴
(
x
n
−
x
n
1
)
2
=
−
4
sin
2
6
nπ
Hence,
n
=
1
∑
24
(
x
n
−
x
n
1
)
2
=
−
4
[
sin
2
6
π
+
sin
2
6
2
π
+
....
+
sin
2
6
24
π
]
=
−
4
(
12
)
=
−
48