Given that (1+x)15=a0+a1x+a2x2+…+a15x15 ⇒15C0+15C1x+15C2x2+…+15C15x15 =a0+a1x+a2x2+…+a15x15
Equating the coefficient of various powers of x, we get a0=15C0,a1=15C1,a2=15C2,…,a15=15C15 ∴r=1∑15rar−1ar=r=1∑15r15Cr−115Cr =r=1∑15r(r−1)!(15−r+1)!15!r!(15−r)!15! =r=1∑15r!(15−r)!(r−1)!(15−r+1)! =r=1∑1515−r+1=15+14+13+…+2+1 =215(15+1)=120