Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If | 1+ sin2& cos2 θ &4 sin 2θ sin2&1+ cos2& 4 sin2θ sin2θ& cos2θ&4 sin2θ-1 | =0 and 0< θ < (π/2) then cos 4θ
Q. If
∣
∣
1
+
sin
2
sin
2
sin
2
θ
cos
2
θ
1
+
cos
2
cos
2
θ
4
sin
2
θ
4
sin
2
θ
4
sin
2
θ
−
1
∣
∣
=
0
and
0
<
θ
<
2
π
then
cos
4
θ
2702
215
KCET
KCET 2009
Determinants
Report Error
A
2
1
21%
B
2
3
36%
C
0
26%
D
2
−
1
17%
Solution:
Given,
∣
∣
1
+
sin
2
θ
sin
2
θ
sin
2
θ
cos
2
θ
1
+
cos
2
θ
cos
2
θ
4
sin
2
θ
4
sin
2
θ
4
sin
2
θ
−
1
∣
∣
=
0
Applying
C
1
→
C
1
+
C
2
⇒
∣
∣
2
2
1
cos
2
θ
1
+
cos
2
θ
cos
2
θ
4
sin
2
θ
4
sin
2
θ
4
sin
2
θ
−
1
∣
∣
=
0
Applying
R
2
→
R
2
−
R
1
,
R
3
→
2
R
3
−
R
1
⇒
∣
∣
2
0
0
cos
2
θ
1
cos
2
θ
4
sin
2
θ
0
4
sin
2
θ
−
2
∣
∣
=
0
⇒
2
(
4
sin
2
θ
−
2
−
0
)
=
0
⇒
sin
2
θ
=
2
1
Now,
cos
4
θ
=
1
−
2
sin
2
2
θ
=
1
−
2
(
2
1
)
2
=
2
1