Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 1,ω ,ω 2 are the cube roots of unity and if [ beginmatrix 1+ω 2ω -2ω -b endmatrix ]+[ beginmatrix a -ω 3ω 2 endmatrix ]=[ beginmatrix 0 ω ω 1 endmatrix ], then a2+b2 is equal to
Q. If
1
,
ω
,
ω
2
are the cube roots of unity and if
[
1
+
ω
−
2
ω
2
ω
−
b
]
+
[
a
3
ω
−
ω
2
]
=
[
0
ω
ω
1
]
,
then
a
2
+
b
2
is equal to
2930
212
KEAM
KEAM 2009
Matrices
Report Error
A
1
+
ω
2
25%
B
ω
2
−
1
15%
C
1
+
ω
27%
D
(
1
+
ω
)
2
26%
E
ω
2
26%
Solution:
Given,
[
1
+
ω
−
2
ω
2
ω
−
b
]
+
[
a
3
ω
−
ω
2
]
=
[
0
ω
ω
1
]
⇒
[
1
+
ω
+
a
ω
ω
2
−
b
]
=
[
0
ω
ω
1
]
⇒
1
+
ω
+
a
=
0
,
2
−
b
=
1
⇒
a
=
−
1
−
ω
,
b
=
1
∴
a
2
+
b
2
=
(
−
1
−
ω
2
)
+
1
2
=
1
+
ω
2
+
2
ω
+
1
2
=
0
+
ω
+
1
(
∵
1
+
ω
+
ω
2
=
0
)
=
1
+
ω