Since, given numbers are in AP. ∴2log9(31−x+2)=log3(4.3x−1)+1 ⇒2log32(31−x+2)=log3((4.3x−1)+log33 ⇒22log3(31−x+2)=log3[3(4.3x−1)] ⇒31−x+2=3(4.3x−1) ⇒y3+2=12y−3, where y=3x ⇒12y2−5y−3=0 ⇒y=−31 or 43 ⇒3x=−31 or 43 ⇒x=log3(43)(∵3x=31) ⇒x=1−log34