Given, (1+ax)n=1+6x+227x2+…+anxn…(i)
The expansion of (1+ax)n is, (1+ax)n=1+nax+2!n(n−1)(ax)2+…(ii)
On comparing the coefficient of like powers of x in Eqs. (i) and (ii), na=6…(iii) 227=2n(n−1)⋅a2 ⇒27=(n−1)(na)⋅a 27−(n−1)a6 [from Eq. (iii)] (n−1)a=29…(iv)
From Eqs. (iii) and (iv), n(n−1)6=29 ⇒nn−1=43 ⇒4n−4=3n ⇒n=4
From Eq. (iii), a=46 ⇒a=3/2