Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (1/a) , (1/b) , (1/c) are in A. P., then ((1/a) + (1/b) - (1/c)) ((1/b) + (1/c) - (1/a)) is equal to
Q. If
a
1
,
b
1
,
c
1
are in A. P., then
(
a
1
+
b
1
−
c
1
)
(
b
1
+
c
1
−
a
1
)
is equal to
1994
195
BITSAT
BITSAT 2014
Report Error
A
a
c
4
−
b
2
3
100%
B
a
2
b
2
c
2
b
2
−
a
c
0%
C
a
c
4
=
b
2
1
0%
D
None of these
0%
Solution:
a
1
−
b
1
=
b
1
−
c
1
∴
(
a
1
+
b
1
−
c
1
)
(
b
1
+
c
1
−
a
1
)
=
(
a
2
−
b
1
)
(
c
2
−
b
1
)
=
a
c
4
−
b
1
(
a
2
+
c
2
)
+
b
2
1
=
a
c
4
−
b
2
(
b
2
)
+
b
2
1
=
a
c
4
−
b
2
3