Q.
If 1,a1,a2,....,an−1 are nth roots of unity, then 1−a11+1−a21+...+1−an−11 equals
2559
227
Complex Numbers and Quadratic Equations
Report Error
Solution:
Given zn=1,z=1,a1,a2,....,an−1...(i)
Let α=1−z1 ∴z=1−α1 ∴(1−α1)n=1 (By (i)) ⇒(α−1)n−αn=0 ⇒−C1αn−1+C2αn−2+...+(−)n=0
where α=1−a11,1−a21,...,1−an−11 ⇒1−a11+a−a21+...+1−an−11 =nnC2=2n−1