Since, p1+4p,21−p and 21−2p
are probabilities of three mutually exclusive events, therefore, 0≤p1+4p≤1,0≤21−p≤0,21−2p≤1
and 0≤p1+4p+21−p+21−2p≤1 ⇒−41≤p≤43,−1≤p≤1 −21≤p≤21 and 21≤p≤25 ⇒max{4−1,−1,2−1,21}≤p≤min{43,1,21,25} ⇒21≤p≤21⇒p=21