Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If, (1+√3)12=a +ib, here a and b are real, then the value of b is
Q. If,
(
1
+
3
)
12
=
a
+
ib
,
here
a
and
b
are real, then the value of
b
is
1843
218
UPSEE
UPSEE 2016
Report Error
A
0
B
1
C
(
3
)
12
D
(
2
)
12
Solution:
We have,
(
1
+
i
3
)
12
=
a
+
ib
Now,
[
2
(
cos
3
π
+
i
sin
3
π
)
]
12
=
a
+
ib
[De-Moivre's theorem]
⇒
2
12
[
cos
3
π
+
i
sin
3
π
]
12
=
a
+
ib
⇒
4096
[
cos
4
π
+
i
sin
4
π
]
=
a
+
ib
⇒
4096
[
1
+
0
]
=
a
+
ib
⇒
4096
=
a
+
ib
On comparing, we get,
b
=
0