cos−1x+cos−1(2x+23−3x2)
Putting x=cosθ in 2nd term, we get cos−1x+cos−1(2cosθ+23−3cos2θ) =cos−1x+cos−1(21cosθ+23sinθ)
Now putting 21=rcosα,23=rsinα =cos−1x+cos−1[rcosαcosθ+rsinαsinθ] =cos−1x+cos−1[cos(α−θ)][r2=41+43=44=1⇒r=1] =cos−1+α−θ =cos−1x+[−cos−1x+3π]=3π [tanα=rcosαrsinα⇒α=3π]