Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 1,2,3 and 4 are the roots of the equation x4+a x3+b x2+c x +d=0, then a+2 b +c is equal to
Q. If
1
,
2
,
3
and
4
are the roots of the equation
x
4
+
a
x
3
+
b
x
2
+
c
x
+
d
=
0
, then
a
+
2
b
+
c
is equal to
2212
213
EAMCET
EAMCET 2007
Report Error
A
−
25
B
0
C
10
D
24
Solution:
If
1
,
2
,
3
,
4
are the roots of the equation
x
4
+
a
x
3
+
b
x
2
+
c
x
+
d
=
0
,
then
(
x
−
1
)
(
x
−
2
)
(
x
−
3
)
(
x
−
4
)
=
x
4
+
a
x
3
+
b
x
2
+
c
x
+
d
⇒
(
x
2
−
3
x
+
2
)
(
x
2
−
7
x
+
12
)
=
x
4
+
a
x
3
+
b
x
2
+
c
x
+
d
⇒
x
4
−
10
x
3
+
35
x
2
−
50
x
+
24
=
x
4
+
a
x
3
+
b
x
2
+
c
x
+
d
⇒
a
=
−
10
,
b
=
35
,
c
=
−
50
,
d
=
24
Now,
a
+
2
b
+
c
=
−
10
+
2
×
35
−
50
=
10