Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 0 ≤[x]<2,-1 ≤[y] < 1 and 1 ≤[z]<3 where [ . ] denotes greatest integral function then the maximum value of the determinant. D=|[x]+1 [y] [z] [x] [y]+1 [z] [x] [y] [z]+1| is
Q. If
0
≤
[
x
]
<
2
,
−
1
≤
[
y
]
<
1
and
1
≤
[
z
]
<
3
where
[
.
]
denotes greatest integral function then the maximum value of the determinant.
D
=
∣
∣
[
x
]
+
1
[
x
]
[
x
]
[
y
]
[
y
]
+
1
[
y
]
[
z
]
[
z
]
[
z
]
+
1
∣
∣
is
368
153
Determinants
Report Error
Answer:
4
Solution:
∣
∣
1
0
[
x
]
−
1
1
[
y
]
0
−
1
[
z
]
+
1
∣
∣
solving
=
[
x
]
+
[
y
]
+
[
z
]
+
1
taking maximum value we get
4
, note that
[
x
]
is always an integer