Given that, sinθ−3sin2θ+sin3θ=cosθ−3cos2θ+cos3θ ⇒(sinθ+sin3θ)−3sin2θ−(cosθ+cos3θ) +3cos2θ=0 ⇒2sin(2θ+3θ)cos(2θ−3θ)−3sin2θ −2cos(2θ+3θ)cos(2θ−3θ)+3cos2θ=0 ⇒2sin2θcosθ−3sin2θ−2cos2θcosθ+3cos2θ=0 ⇒sin2θ(2cosθ−3)−cos2θ(2cosθ−3)=0 ⇒(2cosθ−3)(sin2θ−cos2θ)=0 ⇒2cosθ−3=0cosθ=23
which is not possible.
So, sin2θ−cos2θ=0 ⇒sin2θ=cos2θ ⇒tan2θ=1 ⇒tan2θ=tan4π [∵0<θ<4π] ⇒2θ=4π ⇒θ=8π