Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 0<θ, φ<(π/2), x = undersetn=0 overset∞ Sigma cos 2 n θ, y = undersetn=0 overset∞ Sigma sin 2 n φ and z = undersetn=0 overset∞ Sigma cos 2 n θ ⋅ sin 2 n φ then :
Q. If
0
<
θ
,
ϕ
<
2
π
,
x
=
n
=
0
Σ
∞
cos
2
n
θ
,
y
=
n
=
0
Σ
∞
sin
2
n
ϕ
and
z
=
n
=
0
Σ
∞
cos
2
n
θ
⋅
sin
2
n
ϕ
then :
2796
201
JEE Main
JEE Main 2021
Sequences and Series
Report Error
A
x
y
−
z
=
(
x
+
y
)
z
67%
B
x
y
+
yz
+
z
x
=
z
0%
C
x
yz
=
4
17%
D
x
y
+
z
=
(
x
+
y
)
z
17%
Solution:
x
=
1
−
c
o
s
2
θ
1
⇒
sin
2
θ
=
x
1
Also,
cos
2
θ
=
y
1
&
1
−
sin
2
θ
cos
2
θ
=
z
1
So,
1
−
x
1
×
y
1
=
z
1
⇒
z
(
x
y
−
1
)
=
x
y
…
(
1
)
Also,
x
1
+
y
1
=
1
⇒
x
+
y
=
x
y
…
(
2
)
From
(
i
)
and
(
ii
)
x
y
+
z
=
x
yz
=
(
x
+
y
)
z