Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 0 < A < B < π , sin A+sinâ¡B=√(3/2) and cos A+cos â¡ B=(1/√2), then A=
Q. If
0
<
A
<
B
<
π
,
s
in
A
+
s
in
B
=
2
3
and
cos
A
+
cos
B
=
2
1
,
then
A
=
2729
218
NTA Abhyas
NTA Abhyas 2020
Report Error
A
1
5
o
B
3
0
o
C
4
5
o
D
22
2
1
o
Solution:
(
s
in
A
+
s
in
B
)
2
+
(
cos
A
+
cos
B
)
2
=
2
3
+
2
1
=
2
4
2
+
2
(
s
in
A
s
in
B
+
cos
A
cos
B
)
=
2
cos
(
B
−
A
)
=
0
⇒
B
−
A
=
2
π
⇒
B
=
2
π
+
A
cos
A
+
cos
B
=
2
1
⇒
cos
A
+
cos
(
2
π
+
A
)
=
2
1
⇒
cos
A
−
s
in
A
=
2
1
⇒
cos
A
⋅
2
1
−
s
in
A
2
1
=
2
1
s
in
(
4
5
o
−
A
)
=
2
1
=
s
in
3
0
o
⇒
4
5
o
−
A
=
3
0
o
⇒
A
=
1
5
o