Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
I=∫ limitsπ / 4π / 3((8 sin x- sin 2 x/x)) d x. Then
Q.
I
=
π
/4
∫
π
/3
(
x
8
s
i
n
x
−
s
i
n
2
x
)
d
x
. Then
129
1
JEE Main
JEE Main 2022
Integrals
Report Error
A
2
π
<
I
<
4
3
π
B
5
π
<
I
<
12
5
π
C
12
5
π
<
I
<
3
2
π
D
4
3
π
<
I
<
π
Solution:
Consider
f
(
x
)
=
8
sin
x
−
sin
2
x
f
′
(
x
)
=
8
sin
x
−
2
cos
2
x
f
′
(
x
)
=
−
8
sin
x
+
4
sin
2
x
=
−
8
sin
x
(
1
−
cos
x
)
∴
f
′
(
x
)
<
0
x
∈
(
4
π
,
3
π
)
∴
f
′
(
x
)
is
↓
function
f
′
(
3
π
)
<
f
′
(
x
)
<
f
′
(
4
π
)
5
<
f
′
(
x
)
<
2
8
5
<
f
′
(
x
)
<
4
2
5
x
<
f
(
x
)
<
4
2
x
5
<
x
f
(
x
)
<
4
2
π
/4
∫
π
/3
5
<
∫
x
f
(
x
)
<
π
/4
∫
π
/3
4
2
π
/4
∫
π
/3
5
<
∫
x
8
s
i
n
x
−
s
i
n
2
x
<
π
/4
∫
π
/3
4
2
12
5
π
<
I
<
3
2
π