Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
he enthalpy change for the reaction, CCl4(g) → C(g)+4Cl(g) is Given: Δ textvapH°(CCl4)=30.5 KJ mol-1, ΔfH°(CCl4)=-135.5 KJ mol-1, ΔaH°(C)=715.0 kJ mol-1, ΔaH° (Cl2)=242 KJ mol-1 where ΔaH° is enthalpy of atomisation
Q. he enthalpy change for the reaction,
CC
l
4
(
g
)
→
C
(
g
)
+
4
C
l
(
g
)
is
Given:
Δ
vap
H
∘
(
CC
l
4
)
=
30.5
K
J
m
o
l
−
1
,
Δ
f
H
∘
(
CC
l
4
)
=
−
135.5
K
J
m
o
l
−
1
,
Δ
a
H
∘
(
C
)
=
715.0
k
J
m
o
l
−
1
,
Δ
a
H
∘
(
C
l
2
)
=
242
K
J
m
o
l
−
1
where
Δ
a
H
∘
is enthalpy of atomisation
2155
201
Thermodynamics
Report Error
A
1200
k
J
m
o
l
−
1
27%
B
500
k
J
m
o
l
−
1
27%
C
1304
k
J
m
o
l
−
1
19%
D
1500
k
J
m
o
l
−
1
27%
Solution:
Given :
(i)
CC
l
4
(
l
)
→
CC
l
4
(
g
)
,
Δ
vap
H
=
30.5
k
J
m
o
l
−
1
(ii)
C
(
s
)
+
2
C
l
2
(
g
)
→
CC
l
4
(
l
)
,
Δ
f
H
∘
=
−
135.5
K
J
m
o
l
−
1
(iii)
C
(
s
)
→
C
(
g
)
,
Δ
a
H
∘
=
715.0
K
J
m
o
l
−
1
(iv)
C
l
2
(
g
)
→
2
C
l
(
g
)
,
Δ
a
H
∘
=
242
K
J
m
o
l
−
1
Required equation is :
CC
l
4
(
g
)
→
C
(
g
)
+
4
C
l
(
g
)
;
Δ
H
=
?
From Hess’s law,
eqn.(iii)
+
2
×
eqn.(iv) - eqn.(i) - eqn.(ii) gives required equation:
∴
Δ
H
=
715.0
+
2
(
242
)
−
30.5
−
(
−
135.5
)
=
1304
k
J
m
o
l
−
1