Q.
Given z is a complex number with modulus
1. Then the equation (1−ia1+ia)4=z has
1676
210
Complex Numbers and Quadratic Equations
Report Error
Solution:
Since (1−ia1+ia)4=z and ∣z∣=1 ∴(1−ia1+ia)=cosθ+isinθ ⇒1−ia1+ia=(cosθ+isinθ)41 =cos4(2rπ+θ)+isin4(2rπ+θ)
where r=0,1,2,3 ⇒1−ia1+ia=cosα+isinα where α =42rπ+θ ⇒2ia2=cosα+isinα−1cosα+isinα+1 ⇒i.a1=icot2α ⇒a=−tan2α ⇒a=−tan(82rπ+θ) where r=0,1,2,3 ⇒a=−tan8π,−tan(4π+8θ) cot8π,cot(4π+8θ)