Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Given that x is a real number satisfying (5x2-26x+5/3x2-10x+3) < 0 , then
Q. Given that
x
is a real number satisfying
3
x
2
−
10
x
+
3
5
x
2
−
26
x
+
5
<
0
,
then
1401
206
WBJEE
WBJEE 2015
Complex Numbers and Quadratic Equations
Report Error
A
x
<
5
1
B
5
1
<
x
<
3
C
x
>
5
D
5
1
<
x
<
3
1
or
3
<
x
<
5
Solution:
We have,
3
x
2
−
10
x
+
3
5
x
2
−
26
x
+
5
<
0
⇒
3
x
2
−
9
x
−
x
+
3
5
x
2
−
25
x
−
x
+
5
<
0
⇒
3
x
(
x
−
3
)
−
1
(
x
−
3
)
5
x
(
x
−
5
)
−
1
(
x
−
5
)
<
0
⇒
(
x
−
3
)
(
3
x
−
1
)
(
x
−
5
)
(
5
x
−
1
)
<
0
∴
x
∈
(
5
1
,
3
1
)
∪
(
3
,
5
)