Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For x∈(0, (3/2)), let f(x) = g(x) = tan x and h(x) =(1-x2/1 +x2). If φ (x) ((π/3))= ((hof)og)(x). If φ is equal to tan (pπ/q) then p +q is
Q. For
x
∈
(
0
,
2
3
)
, let
f
(
x
)
=
g
(
x
)
=
tan
x
and
h
(
x
)
=
1
+
x
2
1
−
x
2
. If
ϕ
(
x
)
(
3
π
)
=
(
(
h
o
f
)
o
g
)
(
x
)
. If
ϕ
is equal to tan
q
p
π
then
p
+
q
is
3152
196
Relations and Functions - Part 2
Report Error
Answer:
23
Solution:
∵
ϕ
(
x
)
=
(
(
h
o
f
)
o
g
)
(
x
)
∵
ϕ
(
3
π
)
=
h
(
f
(
g
(
3
π
)
)
)
=
h
(
f
(
3
)
)
=
h
(
3
1/4
)
=
1
+
3
1
−
3
=
2
1
(
1
+
3
−
2
3
)
=
3
−
2
=
−
(
−
3
+
2
)
=
−
t
an
1
5
∘
=
t
an
(
18
0
∘
−
1
5
∘
)
=
t
an
(
π
−
12
π
)
=
t
an
12
11
π
Now, tan
q
p
π
=
t
an
12
11
π
⇒
p
=
11
,
q
=
12
Hence,
p
+
q
=
11
+
12
=
23